Robot technology – advances on the inside  
While robots continue to be developed in terms of their appearance, growing ever more compact, the real advances are being made ‘under the bonnet'. The major technological breakthroughs in recent years have been down to innovations in telecommunication, electronic devices, computing and, of course, software.
The ability of designers to come up with ever more inventive solutions to reduce processor size had made mobile computing possible. This has also increased what we might consider the ‘brain capability' of robots. Other advances that are having a considerable impact on robotics include the transformation of robots to ‘wireless devices'. In other words, wireless communication protocol can make robots susceptible to receiving information from the internet.
While this has had a revolutionary impact on the web in general, it has really advanced the possibilities for what future robots will be able to do. Internet technologies will create intelligent devices. A whole new generation of embedded systems will be made available for use in complex applications. Robots will start using internet-plugged devices, greatly increasing their scope for activities.
A century from now, the area of science where there is the greatest potential for ‘intelligent', web-programmable robots to be used to their full advantage will be in hazardous environments. We can see very rudimentary version of these machine at the moment, trundling across the desert landscapes on Mars to send geological analyses back to base. Tele-operated robots will be increasingly deployed in outer space – and when the time comes to explore other planets and their satellites in our solar system, they will be indispensible.
As systems have evolved, the decision-making and reasoning that is possible has increased considerably. Artificial intelligence is no longer the stuff of science fiction plots, but is being built into state-of-the-art technologies. The word robot itself is often being superseded by terms such as ‘intelligent decision making units', or at the very least ‘intelligent robots'. This reflects the fundamental evolution of robots, from pure machines – albeit pre-programmable and with a degree of built-in tailoring – to advanced computer-driven units capable of reacting to situations and altering their behavior accordingly. These advances are particularly noticeable in areas such as voice recognition, or image processing. All this enables robots (to keep with the more simplistic terms for convenience) much more ‘human-like' in their communication interface with humans.
Robots will continue to explore the world outside the laboratory. Rather than being purely research tools, they will be used as museum guides, or information desk staff.